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Spatio-temporal regimes in Rayleigh-Benard 
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(Received 28 July 1988 and in revised form 3 April 1989) 

By means of an original optical technique we have studied the spatio-temporal 
behaviour in a Rayleigh-Be'nard convection experiment of small rectangular 
geometry. The experimental technique allows complete reconstruction of the 
temperature field integrated along the roll axis. Two main spatiotemporal regimes 
have been found, corresponding to localized oscillations and travelling waves 
respectively. Several parameters are proposed for the quantitative characterization 
of this complex behaviour. 

1. Introduction 
During recent years Rayleigh-Be'nard convection has been widely used to study a 

large number of nonlinear problems that range from pattern selection (Krishnamurti 
1 9 7 0 ~ ;  Stork & Miiller 1972; Gollub & McCarriar 1982; Pocheau, Corquette & Le Gal 
1985; Heutmaker, Fraenkel & Gollub 1985; Ahlers, Cannel & Steinberg 1985) to 
transition from regular to chaotic behaviour (Krishnamurti 1970b ; Gollub & Benson 
1980; Libchaber, Laroche & Fauve 1982: Dubois, Rubio & Berge 1983). 

To illustrate the first stages of Rayleigh-Be'nard instability let us consider a 
horizontal fluid layer confined in a rectangular box. When heated from below a 
competition between buoyancy force, viscous damping and heat diffusion is 
established. Upon progressively increasing the control parameter, i.e. the tem- 
perature difference AT between the two horizontal plates, convection begins a t  a 
certain critical value. A periodic structure appears in the form of a set of parallel rolls 
with wavenumber q .  For a fluid layer confined between conducting plates, with 
infinite horizontal extent, q = 3.l/d, where d is the depth of the fluid layer (for a 
detailed study see, for example, Chandrasekhar 1961 ; Busse & Whitehead 1971 ; 
Normand, Pomeau & Velarde 1977; Busse 1978). 

The most relevant parameters in Rayleigh-Be'nard instability are the Rayleigh 
number R = agATd3/v~, that accounts for the imposed temperature gradient, the 
Prandtl number Pr = v /K that  characterizes the fluid, accounting for the relation 
between the vorticity and heat diffusion coefficients, and finally the aspect ratio 
r = L/d where L and d are, respectively, the horizontal and vertical lengthscales of 
the container. In the definitions of these parameters a, g, v and K represent, 
respectively, the volumetric expansion coefficient, the acceleration due to gravity, 
the kinematic viscosity and the thermal diffusivity. 

Upon further increasing R above the critical value R, (R, = 1708 for the conditions 
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above), the response of the system strongly depends on r. If r is small the fluid 
confinement by the lateral walls is very high and the roll structure is not allowed to 
undergo great changes. On the other hand if r is large the spatial structure is quite 
free to change and usually the original regular roll pattern soon becomes distorted by 
local defects, grain boundaries and dislocations. 

I n  large-aspect-ratio containers most of the experimental observations show that 
the spatial pattern evolution near threshold is in good agreement with theories 
(Pocheau et al. 1985; Heutmaker et al. 1985; Ahlers et al. 1985). However this type 
of cell does not seem to be suitable for studies of transition to temporal chaos. 

For small-aspcct-ratio cells the situation is the opposite: it has been fully 
demonatrated by experiments that very often the time-dependent states can be 
described by low-dimensional attractors, either periodic or strange. However, most 
of these observations were done by measuring a local variable in a fixed position. 

In the frame just described, the problem of the coupling between temporal 
behaviour and spatial structure still remains to be solved. In order to understand the 
transition from regular to turbulent flow, the study of the relationship between 
spatial and temporal degrees of freedom in a fluid system is essential. This study 
should clarify the role of some low-dimensional chaotic states as precursors of 
turbulence. 

The relationship between spatial order and temporal chaos has been recently 
investigated with different approaches. Numerical studies are available for several 
systems that cover the Boussinesq equations for Rayleigh-BBnard convection (Curry 
et al. 1984; Bolton, Busse & Clever 1986), some simple models of partial differential 
equations (Bishop et al. 1983; Hyman & Nicolaenko 1986; Chate & Manneville 1987), 
systems of coupled maps (Kaneko 1985; Oppo & Kapral 1986), and chemical 
reactions (Oono & Kohmoto 1985). 

Experimentally, some of these aspects have been studied in different systems like 
the baroclinic waves in a rotating differentially heated annulus (Buzyna, Pfeffer & 
Kung 1984) and convection in a Hele-Shaw slot (Koster & Muller 1984). In an 
experiment on surface wave instabilities it has been shown that spatial mode 
competition is one of the mechanisms leading to chaotic behaviour (Ciliberto & 
Gollub 1984, 1985; Simonelli & Gollub 1988, 1989). 

Furthermore, in Rayleigh-BBnard convection some relevant spatial features of the 
low-dimensional transitions to chaos have been reported, mainly concerning the 
localization of oscillators (Krishnamurti 1970b; Dubois & Berge 1981 ; Dubois et al. 
1983; Walden et al. 1984). Very recently travelling waves have been found both in 
small-r cells far above onset (Ciliberto & Rubio 1987a) and in convection in binary 
mixtures very near threshold (Kolodner et al. 1 9 8 6 ~ ;  Moses & Steinberg 1986). 

In spite of these advances there are still many open questiohs on the number of 
oscillating modes, the frequency a t  which they oscillate or the way in which energy 
is distributed among them. Furthermore, as far as the characterization of low- 
dimensional chaos is concerned, there are still some open problems related to the 
spatial structure of the chaotic behaviour (Vastano & Swinney 1988). 

Let us briefly review the main tools available for the characterization process. The 
temporal features are usually analysed by means of bifurcation diagrams, return 
maps and power spectra. 

Another way to look a t  chaotic regimes is to study their geometrical properties in 
phase space. Strange attractors are characterized by fractal dimension and metric 
entropy and several methods have been proposed to compute them from 
experimental time series (Farmer, Ott & Yorke 1983; Grassberger & Procaccia 1983; 
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Badii & Politi 1985). Fractal dimension roughly estimates the number of relevant 
variables involved in the process, while metric entropy measures the average rate of 
information loss per unit time, and both may be used to discriminate between low- 
dimensional chaos and purely stochastic phenomena (Malraison et al. 1983 ; Giglio, 
Musazzi & Perini 1984; Ciliberto & Gollub 1985). 

In  most of the experiments the computation of fractal dimension and metric 
entropy is done on the data of a single scalar variable invoking the embedding 
theorem (Takens 1981 ; Farmer et al. 1983). This scalar signal is usually obtained 
from either the local measurement of a variable (e.g. horizontal temperature 
gradient, vertical component of the velocity) or from the measurement of a spatially 
averaged variable (e.g. total heat flux, total electric current in electroconvection). 

Another way of constructing the phase space for the computations is to measure 
a local variable simultaneously at many points and to build up a vectorial variable 
with these time series (Guckenheimer & Buzyna 1983). Very recent results (Ciliberto 
1987) have thrown some light on several questions that could be raised, such as is 
there any spatial dependence of FD for local measurements or are the results 
obtained for spatially averaged variables equivalent to those obtained for local 
measurements 1 

Turning to the study of spatiotemporal regimes, the usual tools are Fourier 
transforms both in space and time (Bishop et al. 1983) and spatiotemporal correlation 
functions (Ciliberto & Rubio 1987 a). Unfortunately both techniques yield qualitative 
results that  are good for identifying different behaviours but do not allow 
quantitative comparison between different regimes. 

Proceeding from this framework, the aim of this paper is to extend these previous 
studies on the relationship between spatial structure and temporal chaos. For this 
purpose experiments were performed in a Rayleigh-Be'nard convective system with 
rectangular geometry and r = 4. In more detail our objectives are twofold. First we 
examine the space-time evolution of the temperature field, focusing our attention on 
identifying the structures as localized or distributed in space and on examining the 
transition between them. Second, we propose to use in this context some parameters 
that allow for quantitative analysis of spatiotemporal regimes. To achieve these 
goals the temperature field is measured by means of an optical scanning beam 
deflection technique (Ciliberto, Francini & Simonelli 1985). 

This paper is organized as follows. In  $2 we describe the apparatus, the beam 
deflection technique and the experimental procedure. In 93 we introduce some 
parameters that can help in the quantitative study of spatio-temporal regimes. Then 
in 94 the results concerning spatio-temporal behaviour are given and the analysis and 
characterization of the structures (in terms of time-resolved spatial Fourier 
transforms) are discussed. Finally, conclusions are presented in 0 5 .  

2. The experimental set-up 
2.1. The convection cell 

The experiments were conducted in a rectangular cell of dimensions 1, = 4 em, 
I ,  = 1 cm and d = 1 cm, giving then r, = 4, r, = 1.  The x and y horizontal axes of 
the coordinate reference frame are respectively perpendicular and parallel to  the 
roll axis, while the z-axis is vertical. 

A schematic view of the cell and the thermal regulation system is displayed in 
figure I .  The upper and lower boundaries are copper plates 1 cm thick (CU), where 
two very narrow holes (0.07 cm diameter) have been drilled in opposite locations to 
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FIGURE. 1. Schematic view of the convection cell and thermal regulation system. 

allow for convenient filling of the cell. The lateral walls are made of 2 cm thick blocks 
of optical quality BK7 glass, whose thermal characteristics can be found, for 
example, in Koster & Miiller (1984) and references therein. The reason for this choice 
was its extremely low refraction index versus temperature coefficient, two orders of 
magnitude below that of the fluid under study. The effect of finite size and non- 
perfectly conducting lateral boundary conditions will be discussed in 5 2.4. The 
closure of the cell is accomplished by means of two O-rings, buried in suitable grooves 
made in the copper plates. 

Each copper plate is in contact with an electrical heater and, by means of two 
aluminium plates, in thermal contact with a thermostated water reservoir that works 
as a cold source to short the thermal inertia of the system. 

The above-described cell is contained in a Plexiglas box with optical-quality glass 
windows through which the measurements are carried out, and the whole system plus 
the optics to be described in $2.2 are placed in a vibration-isolated optical table. 

The temperature regulation is accomplished with three independent systems that 
are schematically shown in the block diagram in figure I. First, there is a 
thermostatic water bath (Haake model F3K) with a measured temperature stability 
of 0.025 "C. As stated above the water circulates in two reservoirs in thermal contact 
with the electrical heaters, the copper plates serving as the cold source. The two 
heating elements are electrical resistors of 60 S-2 and approximately 50 cm2 area. 
These electrical heaters are connected to two independent control systems. The 
temperature in the upper copper plate is controlled by means of a thermistor (Th3) 
introduced through a hole and in good thermal contact with it. This thermistor is 
inserted in a branch of an a.c. bridge (T1 stabilizer), excited with the oscillating 
output of a lock-in amplifier (PAR model 5203) which is also used to detect the 
unbalance of the bridge, and whose output drives an external voltage-controlled 
power supply unit that feeds the upper plate heater. The measured long-term 
stability of the upper plate temperature is f0.002 "C. 

The last part of the system stabilizes the temperature difference between the two 
copper plates (AT stabilizer). This difference is sensed through two matched 
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thermistors inserted in both plates (Thl and Th2). These thermistors are included in 
a d.c. bridge whose output drives another voltage-controlled power supply that feeds 
the bottom plate heater. With this system the long-term stability of the temperature 
difference is better than kO.001 "C. The actual temperature difference across the 
fluid layer has been measured with two calibrated thermistors inserted in both 
copper plates (Th4 and Th5). 

The last d.c. bridge has the salient feature that one of its branches is built around 
two cascaded digitally controlled potentiometers that allow automatic temperature 
difference changes by using a microcomputer. In this way the process of control 
parameter changing is fully automated. 

The working fluid is M3 silicone oil for which we have measured the following set 
of parameters a t  25 "C; v = 2.88 x lop2 cm, s-', p = 0.88 g a: = 8.9 x lop4 K-l, 
K = 1.05 x em2 s-l, therefore giving Pr = 27.5 a t  T = 25 "C. Furthermore we 
have measured the fluid's relevant optical constants, i.e. the index of refraction 
n = 1.395, and its thermal coefficient dn/dT = 4.6 x 

Finally the room temperature is maintained stable within 1.5 "C, allowing 
reasonable stability of all electronics. 

K-l. 

2 .2 .  The scanning technique 

There are several optical techniques that have been used in convection experiments 
with transparent fluids and which take advantage of the temperature dependence of 
the index of refraction of the fluid. Examples of these techniques include the 
focalization images (Pocheau et al. 1985; Kolodner et al. 1986b), interferometric 
methods (Chu & Goldstein 1973; Berge & Dubois 1979; Koster & Muller 1984), 
schlieren (Dubois et al. 1983) and beam deflection (Giglio, Musazzi & Perini 1981 ; 
Arechi, Ciliberto & Rubio 1984). The method used here, that we will explain briefly, 
is an original improvement of the beam deflection technique and has already been 
thoroughly described in Ciliberto et al. (1985). 

The detection system consists of a laser beam that crosses the silicon oil 
perpendicular to the ( X ,  2)-plane and is deflected by the thermal gradients inside the 
fluid layer. For small deviations and supposing the structure of the flow is mainly 
bidimensional, the deflection angles along x and z are related to the thermal gradients 
inside the fluid by the following formulae : 

dn i3T e, = ---1 e = - - - - 1 .  dn aT 
dTax y' d T  az IJ' 

The laser beam sweeps the (X,Z)-plane and we can measure the temperature 
gradient averaged along y as a function of x and z .  

In our experimental set-up, shown in figure 2, the sweep is similar to a TV raster 
scan. The scanning mechanism is built up with two mirrors M, and M, mounted on 
two galvanometers, for the x- and z-scan respectively, and the lenses L, and L,, which 
have the same focal length and are mounted in a confocal configuration to prevent 
the divergence of the laser beam in the testing region. 

The two mirrors M, and M, are placed very close to each other and their distance 
from L, is equal to the focal length of L,. With this arrangement the laser beam 
deflected by the two mirrors reaches the testing region, where the cell is placed, 
remaining parallel to the optical axis a t  every position of the two-dimensional sweep, 
within 3 mrad. This small error is due mainly to the small distance between M, and 
M, which makes perfect focusing of both mirrors impossible. 
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FIGURE 2. Optical set-up. LB laser beam ; GI, G, galvanometers ; PSD position sensitive detector; 
DE detector electronics ; ADC analog to digital converter; pC microcomputer ; 8 D scanners driver; 
S,, F ,  synchronization pulses. 

The sweeping laser beam, after crossing the cell, is collected by the lens I,, on the 
position sensitive detector (PSD) that is placed on the focal plane of this lens. The 
detector outputs in x and z are sent to specific electronics that amplifies both signals 
and normalizes them with respect to the total intensity reaching the PSI), therefore 
compensating for fluctuations in the laser intensity. 

The electronics output voltages are proportional to the coordinates of the 
barycentre of the light distribution on the detector surface, whose position is related 
to the thermal gradients through the expressions 

dn aT dn i3T 
' "dTi3x ' udTi3z' 

d = F l  --; d =PI- -  

where F is the focal length of L,. In  this way the two components of the temperature 
gradient may be measured. 

The last part of the system includes the data acquisition, based on two 12-bit 
resolution AD converters, interfaced with a personal computer (Olivetti M-24). This 
system samples and stores both V ,  and V,  signals for each of the horizontal lines. The 
data acquisition is synchronized with the sweep by sending to the microcomputer the 
pulses F ,  and 8, that mark, respectively, the beginning of the raster scan and 
the start of every horizontal sweep. 

For the measurements that will be reported in $4 the data (aT/dx,aT/az) were 
taken in frames of 16 horizontal rows of 64 points each. The complete frame is 
restricted to an effective area of L, = 3.6 cm and L, = 0.8 cm. The spacings between 
points in the x- and z-directions are 0.06 and 0.056 cm, respectively, both comparable 
with the laser beam width, 0.07 cm in the measuring region. The size of the frame is 
smaller than that of the cell because the beam has to be kept a certain distance away 
from the copper plates and the lateral walls to avoid reflections from them that may 
yield spurious signals. 

The problem of errors has been fully described in Ciliberto et al. (1985). We will just 
note that the overall accuracy of these measurements is about 5 YO and the sensitivity 
better than 0.03 "C cm-l, by using the following optical components : Melles-Griot 
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05 LHR 121 He-Ne laser, General Scanning Gl2ODCM galvanometers, lenses with 
30 cm focal length and position sensitive detector, UDT100. 

In  every run the horizontal scanner was driven a t  a frequency of 40 Hz allowing 
us to take a picture of the whole cell in 0.4 s. This time interval compared to the 
maximum oscillating frequency found in this system (100 mHz), permits the 
acquisition of more than 15 frames per cycle, yielding a good spatiotemporal 
characterization of the temperature field in all regimes. 

A limitation of the method is the insufficient vertical resolution near the horizontal 
boundaries, which does not allow a detailed study of the boundary layers in this cell. 
However, the thermal perturbations detaching from the boundary layers are clearly 
observed and measured in the reconstructions of the temperature field. 

Finally, i t  is important to point out that the heating produced by the laser beam 
used to measure the temperature field is completely negligible. The power of the laser 
was 1 mW and at its optical frequency the absorption coefficient of the silicon oil is 
very small. Furthermore, a direct test did not show any appreciable change of the 
behaviour of the fluid from the instant a t  which the laser was switched on. 

2.3. General procedures and signal processing 
As a general rule, a conveniently averaged frame To(x ,  z )  and a sweep uo(x)  a t  zero 
AT were recorded and automatically subtracted from the actual data to take out of 
the signal the spurious contributions due to aberrations and unavoidable alignment 
errors of the optics. 

For purposes requiring a high number of samples (e.g. fractal dimension 
calculation, Fourier spectra, etc.) we have focused our attention on the evolution of 
a single horizontal scan u ( x ,  t )  = aT(x,  zo, t) /ax,  measured at  64 points on a horizontal 
line a t  height zo. The length of the line covers the whole horizontal length of the cell 
because in this case the alignment is less critical than in the bidimensional case. This 
choice of taking just one horizontal line has an experimental justification. The 
spatiotemporal dynamics of the system does not depend sensitively on the z- 
coordinate, except for the absolute amplitude of the dynamical phenomena. 

A data file with 4096 complete frames would fill nearly 17 Mbytes of memory 
yielding unpractical the storage and unfeasible the treatment of such an amount of 
data. Thus for each time-dependent regime we recorded several frames at  selected 
instants and the u ( x ,  t )  for a t  least 4096 time steps in the periodic and quasi-periodic 
regimes and 8192 in the chaotic ones. 

To better identify the different spatiotemporal regimes we have computed the 
function w(x ,  t )  = u ( x ,  t ) -a (x )  that accounts for the fluctuations of u(z, t )  around the 
time-averaged pattern ~ ( x ) .  The amplitude of u and w are measured in terms of 
the vertical temperature gradient between the two plates ATld .  

We have also computed the spatiotemporal correlation function defined as 

C(d, 7) = f zS , l”w(x+ A ,  t + 7) w(x ,  t )  dz dt, 

where Ti is the time interval over which the integral has been computed. 

frequency Fourier transforms, 
By means of a fast Fourier transform (FFT) algorithm we have calculated 

* I  

f J ( x , f )  = C u ( z ,  t )  exp ( -  jf+ 
t-0 

which allows us to know about the spatial distribution of the oscillating frequencies. 
11 FLM 209 
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We have also computed time-resolved spatial Fourier transforms (TRSFT), 

1, 
cp(n, t )  = Z u ( x ,  t)exp ( -  jlcnx) 

where k = 27~11,. The Fourier transforms have been computed with a Cooley-Tuckey 
FFT algorithm upon single scans that contain 64 spatial data points, and the 
corresponding spectra yield complex amplitudes of the first 32 spatial modes, ranging 
from n = 0 to n = 31, which have proved to be enough for the analysis of these 
structures. By means of these TRSFT we have been able to study the number of 
modes involved in the dynamics and their relative importance in the time-dependent 
regimes. 

Turning to the problem of characterizing the attractors, the fractal dimension and 
the metric entropy have been calculated from 8192 samples of u ( x , t ) ,  allowing 
therefore the measurement of the spatial dependence of both quantities. 

Besides the previously defined parameters that are to be calculated from u(x, t ) ,  we 
can also recover the bidimensional temperature field T(x,z )  averaged over Y .  To 
achieve this goal it suffices to integrate the gradient field with the formula 

2-0 

In  this way the temperature field is reconstructed up to a constant factor T(0,O) 
that cannot be accurately measured because the horizontal thermal boundary layers 
are not well resolved due to optical alignment problems. 

2.4. Experimental procedure 

The experiment was performed in the following way. We start from zero temperature 
difference between the two plates, and the frame To(x, z )  and the sweep uo(x) a t  zero 
gradient are recorded. Then we increase the temperature of the bottom plate up to 
a maximum difference around 300R,. The quasi-steady steps by which the 
temperature difference has been increased are separated by a sufficient amount of 
time for the system to relax to a stable state. This time was usually between one and 
two times the longest horizontal diffusion time T ~ ,  which in our cell was 1.6 x lo4 s. 
It has also been checked several times that this relaxation time was sufficient to 
reach a stable state far above threshold. I n  this way a complete run lasts about three 
weeks. This type of run was repeated several times to check for the dependence of the 
attained regimes on the way in which the control parameter was varied. 

Finally, we labelled the different regimes found using r = ATIAT,, where AT, is 
the theoretical critical temperature difference in the limit r + 1 and computed using 
the fluid parameters at 25 "C. This value is AT, = 0.059 "C, 30% lower than the 
experimentally determined one of 0.084 "C. This small discrepancy deserves a special 
comment. The influence of finite cell size in the critical Rayleigh number has been 
theoretically investigated with either conducting (Catton 1970) or insulating lateral 
boundaries (Catton 1972). Thorough experimental studies are also available in the 
literature (Stork & Muller 1972, 1975; Walden et al. 1987). The general conclusions 
to be drawn from these studies are : first, the finite size has a stabilizing effect, i.e. it  
raises the effective critical R ;  second, for a given cell geometry, insulating lateral 
walls are destabilizing. 

Computing the theoretical critical temperature differences for the geometry of our 
cell, we obtain ATc = 0.089 "C for the case of insulating lateral walls (Catton 1972; 
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Walden et al. 1987), and ATc = 0.124 "C for the case of conducting walls (Catton 
1970; Stork & Muller 1972). In  our case the experimental value shows much better 
agreement with the one obtained for insulating lateral boundaries. 

In  any case, a mismatch between the thermal conductivities of the fluid and the 
lateral walls may influence the behaviour of convection near threshold, because of 
the presence of horizontal temperature gradients. However, in the regimes of interest 
here, i.e. AT % ATc, this mismatch is not relevant because the heat flow is mainly due 
to convection. Also, the same experiments carried out in a cell with Plexiglas lateral 
walls did not show any relevant changes in behaviour. 

3. Quantitative characterization of spatiotemporal regimes 
When studying spatiotemporal problems in Fourier space two main different 

situations may appear. In  the simplest case the dynamics may be ruled by a very 
small number of spatial modes and the measurement of the amplitudes of these 
modes may be sufficient for a complete characterization of the system behaviour. 
This was the case in the previously cited studies of parametrically excited surface 
waves (Ciliberto & Gollub 1984). Indeed, it was shown that only two spatial modes 
were relevant and this observation was later theoretically confirmed (Meron & 
Procaccia 1986). 

On the other hand there may be situations in which many spatial modes are 
involved. This is usually the case in convection experiments in which many spatial 
modes are excited when the time-dependent regime appears (Ciliberto & Simonelli 
1986). In these situations it would be useful to have some tools that would allow 
quantitative comparisons to be made between different spatiotemporal regimes. In  
this sense a parameter has already been defined : the so called ' complexity ' (Simonelli 
& Gollub 1988). It roughly evaluates the number of modes involved in the evolution 
of the system. 

Instead, for this purpose of labelling the different structures we have used two 
other functions defined using the TRSFT. Defining @,(t) = Iv(n,t)I2, we have 
constructed the energy of u(z, t) as 

31 

E( t )  = C $ n ( t ) ,  
n-0 

and we have also defined a 'spectral entropy' function, u(t), as is usually done in the 
studies of energy spatial distribution in oscillator chains (Livi et al. 1985) 

1 31 

g e q  n-0 
~ ( t )  = - ~ C pn( t )  log (Pn(t)) ,  

where 

@ice 
5-0 

In  substance, E(t )  accounts for the evolution of the total energy of the signal 
corresponding to the series u(x, t ) ,  and the so-called spectral entropy a(t) is, as stated 
by Livi et al. 1985 an equipartition energy indicator. We have normalized a(t) with 
respect to the equipartition value 

aeq = 32 (log (32)/32) = 1.505. 
11-2 
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With this normalization the values taken by c(t) range from 0, when all the energy 
is concentrated in only one excited mode, to 1, for equipartition between all modes. 
Needless to say, for steady behaviour both E and c(t) assume constant values. 

Turning to physical space, spatiotemporal convective regimes usually appear in 
one of two forms : either as localized oscillatians or as travelling perturbations. This 
observation can also be put in a quantitative form by means of the following 
parameter : 

where pp indicates peak to peak value and 

This parameter, A, vanishes for a travelling wave and is equal to unity when 
considering a uniform oscillation of a periodic structure. Therefore, it may be 
considered as a mean to distinguish between travelling and standing waves. It can 
be applied in this context, provided that the spatiotemporal autocorrelation function 
is not quickly decaying in space and time. 

4. Experimental results 
4.1. Bifurcation scheme and steady temperature Jields 

Convection near threshold has already been extensively studied using different 
approaches in either large or small boxes (see, for instance, Stork & Miiller 1972; 
Dubois & Berge 1978; Kolodner et al. 19866; Walden et al. 1987). Moreover, as 
already stated in $ 1 ,  our main interest is the interrelation between spatial and 
temporal degrees of freedom in strongly chaotic regimes a t  moderately high r .  
Therefore we skip the problem of convection near threshold and go on with the 
description of the bifurcation scheme in our system. 

Analysing the fluid behaviour as a function of r we first find a steady four-roll 
structure that remain stable up to r = 80. Above this threshold the regimes 
appearing in this system are outlined in table 1. Within the experimental resolution 
in our up/down scanning procedure (typically of order AT,), the bifurcations to the 
time-dependent regimes were always found to be supercritical, i.e. no hysteresis was 
observed. 

It is worth saying that, from one run to another, the r-values corresponding to the 
appearance of the intervals are reproducible within 10 % ; in addition, the interval 
length does not change significantly. In  contrast, in some regions of r ,  the behaviour 
of the system in time-dependent regimes can be different for different runs. For 
instance, interval I ,  of localized oscillations that do not develop a chaotic evolution 
is not observed in all runs, interval I5 shows usually only periodic oscillations, but 
sometimes we have observed subintervals of quasi-periodic and chaotic behaviour, 
and, finally, interval I ,  presents a stationary regime in some runs and very small- 
amplitude localized oscillations in others. These differences depend on the speed with 
which the temperature gradient was raised and on the sequence of states crossed by 
the system. In this context, we will focus our attention just on the general 
characteristic features that we always observe. 
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Interval r Regime Spatial structure 

I ,  8&90 TDt  R4 + LO 
1 2  90-95 S R4 
I3 95-130 TD R5+ LO +TW 
I ,  13@150 S R4 
1, 15&182 TD R4 + LO 
I ,  182-186 SHO R4+RW 
I ,  186-200 $ $ 
I ,  20&300 TD R4 + LO +TW 

$ The interval I ,  presents a stationary regime in some runs and localized oscillations of very 

TD, time dependent, S, stationary, SHO, Shilnikov-type homoclinic chaos, R4, four-roll 
structure, LO, localized oscillations, TW, travelling waves. 

The interval I ,  is not observed in all of the runs. 

small amplitude in others. 

TABLE 1 .  Regimes of fluid behaviour as a function of T 
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FIGURE 3. ( a )  Time-averaged energy E(r), and ( b )  spectral entropy a(r) as functions of the reduced 
temperature r in linear-log scale. ( r  is represented in a log scale to cover the whole measurement 
range). 
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FIGURE 4. Stationary structure a t  r = 35. (a) Isotherm map, separation between isotherms is 
0.085 "C. ( b )  Spatial Fourier spectrum of u(z). (c) Corresponding u(x) .  

The time-averaged values of the energy E(r) and the entropy afr) are reported, as 
a function of log(r), in figures 3 ( a )  and 3(b)  respectively. The energy increases 
roughly linearly with r ,  while the entropy shows a more complex behaviour. The 
error in both measurements is smaller than the size of the symbols. As shown in figure 
3 ( b )  the entropy initially increases up to  r = 7.5. Above this value it decreases up to 
r = 20, while the energy remains nearly constant, i.e. it is concentrated in a smaller 
number of modes. This happens because, for these values of r ,  the characteristic 
wavelength of the convective structure is a submultiple of the cell length. 

A stationary structure is depicted in figure 4 ( a ) ,  at  r = 35, where the isotherms are 
shown. The expected four-roll structure is immediat'ely recognized, although owing 
to the aforementioned alignment problems the extreme right ascending current has 
been lost in the picture. The separation between isotherms is 0.085 "C. 

The horizontal temperature gradient a t  the middle plane of the cell, i.e. u(x), is 
shown in figure 4(c), and its spatial Fourier spectrum is plotted in figure 4(b). 

We report also the highest stationary spatial structure in our system that was 
found at r = 146, corresponding to interval I, in table 1 .  In  figure 5 ( a )  we have 
plotted the temperature field with a separation between isotherms of 0.66 "C ; we also 
show its corresponding u ( x )  and the spatial spectrum $(n) of u(x) in figures 5 ( c )  and 
5 ( b )  respectively. In  figure 5(a)  another four-roll structure can be recognized, 
although the extreme left ascending current is not visible in this level plot. The whole 
structure resembles very much that in figure 4 ( a )  with some minor differences, but 
upon comparing the horizontal gradients a t  middle height these differences become 
more clear. First, for r = 146, the division of the convective flow into four main rolls 
is reinforced (see the sharp changes of sign of u(x) in the boundaries between rolls). 
Second, u(z) is more irregular in figure 5 ( c ) ,  which reveals the increasing importance 
of higher harmonics in the flow configuration. 

These points may be better seen by comparing both spatial spectra (figures 4b and 
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0 30 0 4 
n x l d  

FIGURE 5. Stationary structure at  r = 146. (a) Isotherm map, separation between isotherms is 
0.66 "C. (b )  Spatial Fourier spectrum of u(z).  (c). Corresponding ~ ( 5 ) .  

FIGURE 6. Time-dependent temperature field for a localized monoperiodic regime with frequency 
f = 78 mHz ( r  = 89.5). Interval between pictures is 3.2 s ; separation between isotherms is 0.4 "C. 
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Fib). In figure 4(b) the most important spatial modes are n = 3 and n = 8. In figure 
5 ( b ) ,  the most important mode is n = 2 ,  while modes 3, 5 and 8 have roughly equal 
amplitudes. In this case beating between n = 2 and the harmonics of mode 5 can be 
recognized up to n = 22. 

The main wavelength of a convective structure near threshold is roughly 2d, so in 
our cell (r = 4) we should have a four-roll structure; therefore the main peak in the 
spatial spectrum should be n = 2. However, owing to the dependence of q on r ,  the 
characteristic wavelength of the spatial structure may not be an integer submultiple 
of the cell horizontal length. So in this case the main peak may change its position 
from n = 2 to n = 3, owing to the perturbation introduced by the finite size of the 
cell. 

The values obtained for the energy and the entropy of both structures in figures 
4 and 5, are E = 2.5, u = 0.6, for r = 35, and E = 7.9, u = 0.72, for r = 146. The 
values of E do not add information in this case, being higher a t  higher r as expected, 
but u confirms the conjecture that in the second structure the energy is distributed 
among a number of modes higher than in the first one. 

4.2. Periodic and chaotic behaviour : localized oscillations and travelling waves 
Some aspects of the first time-dependent stages, mainly concerning the temporal 
features, have already been reported by Ciliberto & Rubio (1987 a ,  b) .  In this paper 
we will focus our attention on some spatiotemporal features that remained unclear 
in previous studies. 

To understand the nature of the oscillators we have plotted in figures 6 and 7 the 
evolution of the temperature field in the time-dependent regimes corresponding to  
the intervals I ,  and I, in table 1. 

Figure 6(a -d )  is a t  r = 89.5, a value at which a monoperiodic oscillating regime is 
present, and they have been recorded with a delay time between pictures of 3.2 s. The 
whole series plotted corresponds to one period of the oscillation (the following picture 
in the sequence would be equal to figure 6 a ) ,  and the separation between isotherms 
is 0.4 "C. 

This oscillator can be identified as a hot drop that is periodically formed in the 
lower-right part of the cell. The main characteristic of this drop is that its position 
does not change with time, i.e. only its volume is time-dependent. Moreover the 
temperature field is affected only in the right part of the cell, the left one remaining 
almost unchanged. In  this sense this is a localized oscillator. 

In figure 7(a-f), a t  r = 128.5 with a delay of 2.4 s between pictures, we have 
plotted the evolution of the temperature field corresponding to interval I,, with a 
separation between isotherms of 0.58 "C. In  this case the behaviour, although 
corresponding to a monoperiodic oscillator too, is more complex. In this case the 
whole structure of the temperature distribution is changing with time. The analysis 
of u(x, t )  will clearly show the existence of travelling perturbations for this type of 
globally time-dependent temperature field. 

As representative examples we show figures 8 and 9, at different r-values from 
figures 6 and 7, and this selection of r-values deserves a brief comment. Although the 
localized (respectively global) time-dependence of T(x, z )  in figure 6 (respectively 
figure 7)  is also shown for the r-values corresponding to figure 9 (respectively figure 
8 ) ,  we have selected these r-values for figures 8 and 9 because they are closer to 
the regimes to be discussed in $4.3. Conversely, for the images of the whole 
temperature field, we have chosen lower r-values because a t  higher r-values T(x, z )  is 
more complex and the plots would be less illustrative a t  first sight. 
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FIGURE 7. Time-dependent temperature field for a travelling wave monoperiodic regime ; frequency 
f =  83.3 mHz ( r  = 128.5). Interval between pictures is 2.4 s;  separation between isotherms is 
0.58 "C. 

I n  figure 8 we have plotted four different representations of the dynamics for a 
state equivalent to that in figure 7 a t  r = 130. These representations are respectively 
the evolution of u(x,  t )  (in figure 8a) ,  its time-dependent component w(z, t )  (in figure 
8 b ) ,  the spatiotemporal correlation function of w(z,t), i.e. C(d,7) (in figure 8c) and 
finally the position of the maxima of C(d,7) as a function of 7 (in figure 8 4 .  

Conversely, in figure 9 we have plotted the same functions as in figure 8 measured 
at r = 174.5, which corresponds to a localized state equivalent to that shown in 
figure 6. 

Certainly the difference appears more clear when comparing figures 8 ( c )  with 9 ( c ) ,  
and 8 ( d )  with 9 ( d ) .  In figure 9(c)  the space-time correlation function can be 
decomposed to a product of two functions. One depends only on the spatial 
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FIQURE 8. Travelling wave behaviour at  r = 130. Space-time evolution of (a )  u(z, t )  and ( b )  w(z ,  t )  ; 
(c) corresponding C ( ~ , T ) .  (d )  Time evolution of the positions of the maxima of C (crosses). 

coordinate while the other is periodic in time. This decomposition means that the 
thermal oscillation is a standing wave. Furthermore, as it is possible to see in figure 
9(b ) ,  it is localized in the left side of the cell. This is also confirmed by the evolution 
of the maxima in figure 9 ( d )  which always stay a t  a fixed position as time passes? and 
more quantitatively by the localization parameter. In fact we have A = 0.91 for the 
localized oscillation at  r = 174.5, and A = 0.24 for the travelling perturbation a t  
r = 130. Figure 8 ( c )  is more complex because it also shows the presence of some 
propagating perturbation. This is quite clear in figure 8 ( d ) ,  where the maxima of 
C(A,  7) reveal a certain travelling behaviour. This travelling behaviour appears 
also at higher values of r as may be seen in figure l O ( a 4 )  taken at r = 260, where 
the same functions as in figures 8 and 9 have been plotted. 

It is useful to point out that in both cases the character of the spatiotemporal 
behaviour is seen much better on the correlation function than in the actual 
experimental signal u(z,t) (figures 8 a  and 9 a ) ,  or its time-depending part w(z,t) 
(figures 8 b and 9 b ) .  

The observed velocities V of propagation of the maxima of C ( A ,  7), range between 
0.03 and 0.08 cm/s, consistent with the velocity scale v / d  = 0.03 cm/s. We did not 
find any law relating V either to r or to the frequency of oscillation, but it slightly 
depends on the z-coordinate where u(z, t )  has been measured. It is larger near the top 
and the bottom of the cell than in the centre. 

It is important to remark that we have not found a general relationship between 
localized or travelling perturbations and the associated time evolution, either 
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FIGURE 9. Localized oscillations at r = 174.5. Space-time evolution of (a) u(z, t) and (b) w(z , t ) ;  
(c) corresponding C(d,7). (d )  Time evolution of the positions of the maxima of C (crosses). 

periodic or chaotic. More specifically, inside the interval I ,  reported in table 1, we 
have found some special cases of transition between localized oscillation and 
travelling waves that have an intrinsic interest due to some special features that will 
be described in 94.3. This type of transition corresponds to an homoclinic orbit, 
probably of Shilnikov type (Guckenheimer & Holmes 1983). 

4.3. Transition between localized oscillations and travelling waves 
The transition occurs a t  ro = 182. The spatiotemporal regime prior to this bifurcation 
can be identified as a localized one such as that shown in figure 9(a-d). 

Upon increasing r over the critical value ro, there is a marked change in the 
spatiotemporal evolution of the system. For r < ro, the energy and the local 
temperature gradient at any point of the cell show smooth time-dependence, 
irrespective of the actual regime being periodic or chaotic. 

At r = 184, the time evolution of the energy E(t )  is shown in figure 1 1  (a).  A 
detailed analysis of this signal reveals that  there are regular oscillatory periods that 
are suddenly interrupted by randomly distributed energy pulses that last about 200 s. 
During these pulses, which we will call bursts in the following, the energy shows 
mean value changes larger than the oscillation amplitude in the regular periods. This 
type of temporal behaviour, which is observed in a global variable such as the energy, 
is also present in the evolution of temperature gradient in any position of the cell. 

A closer view of the so-called ‘regular periods’ shows the existence of two 
frequencies, with values fi = 15 mHz, and f2 = 168 mHz. This evolution can be 
interpreted in the sense that the behaviour of the system in this region of parameter 



326 M .  A .  Rubio, P .  Bigazxi, L. Albavetti and S. Ciliberto 

t I 
) 30 (4 

0.3 30 

7(9 - w(x, 1) 

(ATld)  (s) 

+ 
- 0.03 

I ' I I  8 I '  

0 2 

FIQURE 10. Travelling wave behaviour at r = 260. Space-time evolution of (a )  u(z,t) and 
( b )  w(z,t); (c) corresponding C(d,7). (d) Time evolution of the positions of the maxima of 
C (crosses). 

space is ruled by five main degrees of freedom. Four degrees of freedom account for 
the two couples of complex-conjugate eigenvalues with negative real part 
corresponding to the two damped oscillating modes associated with the frequencies 
f i  and f i .  The last degree of freedom corresponds to  the positive real eigenvalue that 
allows for the bursting behaviour. A fractal dimension calculation for this regime 
gives further support to this interpretation yielding a value of 5.2 

This type of evolution is characteristic of Shilnikov-type homoclinic chaos that has 
been observed in numerical integration of simple models of nonlinear partial 
differential equations (Hyman & Nicolaenko 1986), and in Rayleigh-Be'nard 
convection experiments in a cell with r = 3 (A. Sano 1988, private communication), 
A behaviour similar to the Shilnikov type has been also reported in a model for large- 
scale flow in Rayleigh-Be'nard convection (Howard & Krishnamurti 1986). The 
appearance of a large-scale flow might be the reason for the existence of our 
travelling perturbation. This conjecture is reinforced by recent results (Linz et al. 
1988) that show a possible relationship between travelling wave behaviour and large- 
scale lateral mean flow in a model of convection in a binary mixture. 

We have carefully compared the spatiotemporal characteristics of the numerical 
solutions of the above-mentioned equations (Hyman & Nicolaenko 1986) with those 
found in our experiment. 

Several of these spatiotemporal characteristics could be checked in our system. 
Indeed in these mathematical models the appearance of the Shilnikov-type chaos 

0.1. 
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FIGURE 11. Transition between localized oscillations and travelling waves a t  r = 184. (a)  Time 
evolution of the energy E(t). ( b )  Space-time evolution u(x, t )  averaged over four periods of the fast 
oscillations. 

FIGURE 12. (a) Space-time evolution of w(x,  t )  recorded during the laminar period of the regime 
shown in figure 11. ( b )  Corresponding correlation function C(d,7). 

coincides with a change in the spatial distribution of the oscillators; before the 
bifurcation, the oscillators are localized while after the bifurcation travelling waves 
are present. 

Moreover, the bursts are associated with major changes in the spatial structure of 
the solutions. These bursts are found to be coincident with the re-emergence of the 
stationary spatial structure existing just prior to  this transition. Finally, even- 
wavenumber spatial modes evolve in counter phase with respect to the odd ones. 
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FIGURE 13. Time-averaged spatial structures a t  r = 184, (a) during the laminar period, ( b )  during 
the burst. ( c )  Time evolution of the entropy at r = 184; the horizontal line corresponds to the value 
of the entropy for the structure in figure 5(c)  ( r  = 146). 

Turning back to our experimental results, some of these spatiotemporal features 
can be unambiguously seen in figures 11 ( b )  and 12 (a,  b ) ,  corresponding to a value of 
r = 184. 

In figure 11 (6) we have plotted the evolution of ufz, t )  averaged over four periods 
of the fast oscillation. During the burst there is a large structure change that 
corresponds to a quick shift of the main current to a more centred position. In  the 
following regular period, this current slowly returns to  its original position, until the 
next burst takes place. 
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FIGURE 14. Time evolution of the amplitudes of the spatial modes (a) n = 6, ( b )  n = 7 a t  r = 184. 
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FIGURE 15. Average duration of the regular periods versus the relative distance to the bifurcation. 
Experimental points (crosses) and least-squares fit (solid line). 
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In figure 12 (a) we show w(x, t )  recorded during a laminar period of the regime 
depicted in figure 11 (a ) .  Its  spatiotemporal correlation function is reported in figure 
12 (b ) .  The presence of a travelling perturbation can be clearly seen in the correlation 
function, and therefore a transition from localized oscillations to a travelling wave 
behaviour has taken place. 

An analysis of the spatial structure is carried out in figure 13 (a-c), where we have 
shown two relevant time-averaged spatial structures. Figures 13 (a) and 13 ( b )  
correspond to the regular and bursting parts of the evolution in figure l l ( a )  
respectively. The shift of the central current already described in figure 11 (b )  is seen 
once again. A strong similarity can be appreciated between figures 13(b) and 5 ( c ) ,  
which, as may be recalled, is the stationary spatial structure existing just  prior to the 
time-dependent regime leading to this transition ( r  = 146). 

This check of the similarity between both structures can be performed in a 
quantitative way using the previously defined spectral entropy. In figure 13(c) we 
show the evolution of this quantity corresponding to figure 11 (a). The straight line 
is drawn a t  the entropy value of the stationary spatial structure in figure 5 ( c ) .  In  the 
bursting region the spectral entropy of the system returns to the value corresponding 
to the stationary structure. Moreover we found that during the burst there is a largc 
exchange of energy between odd and even spatial modes ; this fact can be appreciated 
in figures 14(a) and 14(b), where the amplitudes of modes 6 and 7 are shown as a 
function of time. 

Finally, the average duration of the regular periods shows a power-law dependence 
on the relative distance to the bifurcation. The results are plotted in figure 15, where 
the crosses are the experimental points and the continuous line corresponds to a 
least-squares fit that yields the following relation : 

To = 850(r-~,)-~.". 

The theoretical behaviour to  be expected for To very close to the bifurcation point 
is of exponential type. However, slightly beyond this critical point, a power-law 
decay with an exponent close to 0.1 has been found in the above-mentioned 
numerical simulations (B. Nicolaenko private communication). Nevertheless, this 
may well be a coincidence, for no universality is to be expected in this exponent. 

5. Conclusions 
5.1. Main results 

We summarize here the major results of this investigation : 
1. We extend previous experimental work on Rayleigh-BBnard convection in 

small boxes to the study of spatio-temporal regimes. 
2.  We use a beam deflection scanning technique that allows a complete 

reconstruction of the temperature field integrated along the roll axis (figures 6 and 
7) .  However, owing to the limited vertical resolution near the horizontal boundaries 
some relevant physical mechanisms may be missed. 

3. By studying the spatio-temporal autocorrelation function of a component of the 
temperature gradient we identify different structures as being localized or travelling 
(figures 8 and 9). We also introduce a parameter that  accounts for the degree of 
localization of the spatio-temporal regime. 

4. The use of time-resolved spatial Fourier analysis allows us to define an energy 
and a spectral entropy that are used to make quantitative comparisons between 
different structures (figures 3 and 13). 
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5 .  A transition between localized oscillations and travelling wave regimes has been 
carefully studied. We show that this transition has many of the properties usually 
associated with a Shilnikov-type homoclinic chaos (figures 11,  14 and 15) as in 
Kuramoto-type equations. 

5 . 2 .  Discussion 
One novel feature of this investigation is the direct measurement of the temperature 
field integrated along the roll axis. The beam deflection scanning technique proves to 
be very useful in this context because the measurement time is much shorter than the 
characteristic times involved in the dynamics of the convective system. The only 
important restriction is that the flow configuration should not be strongly three- 
dimensional. 

Moreover, many applications can be imagined. When detection by transmission is 
needed, the technique reveals the optical disuniformity fields due either to the shape 
of the object under investigation or to refraction index gradients, regardless of origin. 
But it can be set up also in a reflection configuration and therefore may be used to 
detect surface deformations (e.g. Marangoni convection). 

The convective spatial structure in small boxes has usually been thought to be 
frozen by the strong effect of the cell walls. Here, however, we have shown that 
travelling perturbations can be found, as well as localized ones, for high values of the 
control parameter r .  Furthermore, in such a small cell i t  has been reported (Ciliberto 
1987) that the chaotic behaviour of the system is not uniform; the fractal dimension 
and metric entropy depend on spatial coordinates. This dependence is stronger when 
the oscillators are localized. I n  this case it has been found that the fractal dimension 
changes from 2.5 to more than 5 from one side of the cell to the other. 

The scenario in which these travelling and standing waves appear is very similar 
to that found in numerical simulations of a Kuramoto-type equation (Nicolaenko 
1987) recently derived for a compressible solar convective layer zone (Depasier & 
Spiegel 1981; Poyet 1983; Depassier 1984). Although our results are only in 
qualitative agreement with those of Nicolaenko it is tempting to think that a model 
similar to the above-cited ones may rule the dynamics of our system. 

Physical explanations for some features, such as critical AT, spatial structure, 
changes in spatial mode distribution, energy and entropy have been given within the 
frame of classical results on convection. Unfortunately, when turning to the time- 
dependent behaviour few explanations can be outlined. For fluids with Prandtl 
number like ours the time-dependent behaviour is caused by boundary-layer 
instabilities, and we are not aware of any theoretical or numerical study that could 
rigorously apply to our system and with which we could compare our data. We 
certainly do not have explanations for the fact of the Shilnikov-type transition being 
associated with the change in spatio-temporal behaviour, but this is also true for the 
simplified models with which we have carried out the comparison. We believe that 
a detailed understanding of this highly nonlinear phenomenon is far beyond the 
limits of our present knowledge. 

Finally, the introduction into this field of tools developed in statistical mechanics, 
such as the energy and spectral entropy, seems to be very promising. In  a very recent 
example Rayleigh-BBnard convection has been studied in an annulus (Ciliberto & 
Bigazzi 1988). The use of statistical mechanics methods has allowed the transition to 
spatiotemporal intermittency to be characterized as having many of the properties 
of a phase transition. 

The results reported here are limited to a moderately high-Prandtl-number fluid 
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(Pr = 30) and small-aspect-ratio cell. For future work these studies should be 
extended to other Prandtl numbers and larger-aspect-ratio cells. This last 
experimental condition yields a physical system more manageable from the 
theoretical point of view and we believe that it might allow for more quantitative 
comparisons with numerical simulations. 

We acknowledge F. T. Arecchi, P.  Coullet, F. Simonelli and B. Nicolaenko for 
fruitful discussions and S. Acciai, S. Euzzor, S. Mascalchi, P. Poggi and A. Tenani or 
efficient technical assistance. We also acknowledge one of the referees for very useful 
comments. This work has been partially supported by Gruppo Nazionale di 
Struttura della Materia. 
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